2,384 research outputs found

    Applications of artificial intelligence techniques to a spacecraft control problem

    Get PDF
    Artificial intelligence applied to spacecraft control proble

    Negative-Energy Spinors and the Fock Space of Lattice Fermions at Finite Chemical Potential

    Full text link
    Recently it was suggested that the problem of species doubling with Kogut-Susskind lattice fermions entails, at finite chemical potential, a confusion of particles with antiparticles. What happens instead is that the familiar correspondence of positive-energy spinors to particles, and of negative-energy spinors to antiparticles, ceases to hold for the Kogut-Susskind time derivative. To show this we highlight the role of the spinorial ``energy'' in the Osterwalder-Schrader reconstruction of the Fock space of non-interacting lattice fermions at zero temperature and nonzero chemical potential. We consider Kogut-Susskind fermions and, for comparison, fermions with an asymmetric one-step time derivative.Comment: 14p

    The signature of dissipation in the mass-size relation: are bulges simply spheroids wrapped in a disc?

    Full text link
    The relation between the stellar mass and size of a galaxy's structural subcomponents, such as discs and spheroids, is a powerful way to understand the processes involved in their formation. Using very large catalogues of photometric bulge+disc structural decompositions and stellar masses from the Sloan Digital Sky Survey Data Release Seven, we carefully define two large subsamples of spheroids in a quantitative manner such that both samples share similar characteristics with one important exception: the 'bulges' are embedded in a disc and the 'pure spheroids' are galaxies with a single structural component. Our bulge and pure spheroid subsample sizes are 76,012 and 171,243 respectively. Above a stellar mass of ~101010^{10} M_{\odot}, the mass-size relations of both subsamples are parallel to one another and are close to lines of constant surface mass density. However, the relations are offset by a factor of 1.4, which may be explained by the dominance of dissipation in their formation processes. Whereas the size-mass relation of bulges in discs is consistent with gas-rich mergers, pure spheroids appear to have been formed via a combination of 'dry' and 'wet' mergers.Comment: Accepted for publication in MNRAS, 6 pages, 3 figure

    Maximum gradient embeddings and monotone clustering

    Full text link
    Let (X,d_X) be an n-point metric space. We show that there exists a distribution D over non-contractive embeddings into trees f:X-->T such that for every x in X, the expectation with respect to D of the maximum over y in X of the ratio d_T(f(x),f(y)) / d_X(x,y) is at most C (log n)^2, where C is a universal constant. Conversely we show that the above quadratic dependence on log n cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield a framework for the design of approximation algorithms for a wide range of clustering problems with monotone costs, including fault-tolerant versions of k-median and facility location.Comment: 25 pages, 2 figures. Final version, minor revision of the previous one. To appear in "Combinatorica

    Limitations to Frechet's Metric Embedding Method

    Full text link
    Frechet's classical isometric embedding argument has evolved to become a major tool in the study of metric spaces. An important example of a Frechet embedding is Bourgain's embedding. The authors have recently shown that for every e>0 any n-point metric space contains a subset of size at least n^(1-e) which embeds into l_2 with distortion O(\log(2/e) /e). The embedding we used is non-Frechet, and the purpose of this note is to show that this is not coincidental. Specifically, for every e>0, we construct arbitrarily large n-point metric spaces, such that the distortion of any Frechet embedding into l_p on subsets of size at least n^{1/2 + e} is \Omega((\log n)^{1/p}).Comment: 10 pages, 1 figur

    The Isgur-Wise function in a relativistic model for qQˉq\bar Q system

    Full text link
    We use the Dirac equation with a ``(asymptotically free) Coulomb + (Lorentz scalar) linear '' potential to estimate the light quark wavefunction for qQˉ q\bar Q mesons in the limit mQm_Q\to \infty. We use these wavefunctions to calculate the Isgur-Wise function ξ(v.v)\xi (v.v^\prime ) for orbital and radial ground states in the phenomenologically interesting range 1v.v41\leq v.v^ \prime \leq 4. We find a simple expression for the zero-recoil slope, ξ(1)=1/2ϵ2/3\xi^ \prime (1) =-1/2- \epsilon^2 /3, where ϵ\epsilon is the energy eigenvalue of the light quark, which can be identified with the Λˉ\bar\Lambda parameter of the Heavy Quark Effective Theory. This result implies an upper bound of 1/2-1/2 for the slope ξ(1)\xi^\prime (1). Also, because for a very light quark q(q=u,d)q (q=u, d) the size \sqrt {} of the meson is determined mainly by the ``confining'' term in the potential (γσr)(\gamma_\circ \sigma r), the shape of ξu,d(v.v)\xi_{u,d}(v.v^\prime ) is seen to be mostly sensitive to the dimensionless ratio Λˉu,d2/σ\bar \Lambda_{u,d}^2/\sigma. We present results for the ranges of parameters 150MeV<Λˉu,d<600MeV150 MeV <\bar \Lambda_{u,d} <600 MeV (ΛˉsΛˉu,d+100MeV)(\bar\Lambda_s \approx \bar\Lambda_{u,d}+100 MeV), 0.14GeV2σ0.25GeV20.14 {GeV}^2 \leq \sigma \leq 0.25 {GeV}^2 and light quark masses mu,md0,ms=175MeVm_u, m_d \approx 0, m_s=175 MeV and compare to existing experimental data and other theoretical estimates. Fits to the data give: Λˉu,d2/σ=4.8±1.7{\bar\Lambda_{u,d}}^2/\sigma =4.8\pm 1.7 , ξu,d(1)=2.4±0.7-\xi^\prime_{u,d}(1)=2.4\pm 0.7 and VcbτB1.48ps=0.050±0.008\vert V_{cb} \vert \sqrt {\frac {\tau_B}{1.48 ps}}=0.050\pm 0.008 [ARGUS '93]; Λˉu,d2/σ=3.4±1.8{\bar\Lambda_{u,d}}^2/\sigma = 3.4\pm 1.8, ξu,d(1)=1.8±0.7-\xi^\prime_{u,d}(1)=1.8\pm 0.7 and VcbτB1.48ps=0.043±0.008\vert V_{cb} \vert \sqrt { \frac {\tau_B}{1.48 ps}}=0.043\pm 0.008 [CLEO '93]; ${\bar\Lambda_{u,d}}^2/Comment: 22 pages, Latex, 4 figures (not included) available by fax or via email upon reques

    Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis

    Get PDF
    Supported by the Global Alliance for TB Drug Development with support from the Bill and Melinda Gates Foundation, the European and Developing Countries Clinical Trials Partnership, U.S. Agency for International Development, U.K. Department for International Development, Directorate General for International Cooperation of the Netherlands, Irish Aid, Australia Department of Foreign Affairs and Trade, and National Institutes of Health, AIDS Clinical Trials Group and by grants from the National Institute of Allergy and Infectious Diseases (NIAID) (UM1AI068634, UM1 AI068636, and UM1AI106701) and by NIAID grants to the University of KwaZulu Natal, South Africa, AIDS Clinical Trials Group (ACTG) site 31422 (1U01AI069469); to the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South Africa, ACTG site 12301 (1U01AI069453); and to the Durban International Clinical Trials Unit, South Africa, ACTG site 11201 (1U01AI069426); Bayer Healthcare for the donation of moxifloxacin; and Sanofi for the donation of rifampin.Background: Early-phase and preclinical studies suggest that moxifloxacin-containing regimens could allow for effective 4-month treatment of uncomplicated, smear-positive pulmonary tuberculosis. Methods: We conducted a randomized, double-blind, placebo-controlled, phase 3 trial to test the noninferiority of two moxifloxacin-containing regimens as compared with a control regimen. One group of patients received isoniazid, rifampin, pyrazinamide, and ethambutol for 8 weeks, followed by 18 weeks of isoniazid and rifampin (control group). In the second group, we replaced ethambutol with moxifloxacin for 17 weeks, followed by 9 weeks of placebo (isoniazid group), and in the third group, we replaced isoniazid with moxifloxacin for 17 weeks, followed by 9 weeks of placebo (ethambutol group). The primary end point was treatment failure or relapse within 18 months after randomization. Results: Of the 1931 patients who underwent randomization, in the per-protocol analysis, a favorable outcome was reported in fewer patients in the isoniazid group (85%) and the ethambutol group (80%) than in the control group (92%), for a difference favoring the control group of 6.1 percentage points (97.5% confidence interval [CI], 1.7 to 10.5) versus the isoniazid group and 11.4 percentage points (97.5% CI, 6.7 to 16.1) versus the ethambutol group. Results were consistent in the modified intention-to-treat analysis and all sensitivity analyses. The hazard ratios for the time to culture negativity in both solid and liquid mediums for the isoniazid and ethambutol groups, as compared with the control group, ranged from 1.17 to 1.25, indicating a shorter duration, with the lower bounds of the 95% confidence intervals exceeding 1.00 in all cases. There was no significant difference in the incidence of grade 3 or 4 adverse events, with events reported in 127 patients (19%) in the isoniazid group, 111 (17%) in the ethambutol group, and 123 (19%) in the control group. Conclusions: The two moxifloxacin-containing regimens produced a more rapid initial decline in bacterial load, as compared with the control group. However, noninferiority for these regimens was not shown, which indicates that shortening treatment to 4 months was not effective in this setting. (Funded by the Global Alliance for TB Drug Development and others; REMoxTB ClinicalTrials.gov number, NCT00864383.)Publisher PDFPeer reviewe
    corecore